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Optimizing an ICF experiment requires efficient traversal of a

high ( ) dimensional parameter space
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Since experiments are costly, predictive tools must be used to search
the design space. These tools must be

1. Accurate

2. Fast

3. Easy to update with new experimental data




The traditional tool for predictive modeling in ICF has been
simulations, but they are not accurate enough to guide

experimental design UR
LLE
Pros of using Cons of using
simulations simulations
A Encodes our best A They are not
understanding of predictive
physics

A Cheaper than
experiments
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Simulations can be made more predictive by incorporating

historical experimental data in a statistical manner
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Training a statistical model on previous data can
‘correct’ simulations to predict the next experiment

Initial condition

Laser power

2014-2019
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If experiments are systematically perturbed, it is possible

to construct a predictive model from 1-D hydrocodes
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Pulse shape + target specs w’aﬁc and random nonuniformity seeds
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_ Predict experiment from 1-D simulation

Existence of mapping relation requires repeatable experiments © only systematic nonuniformities.
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Using the statistical framework, OMEGA neutron yields were
tripled in just seven shot days
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Optimization of areal densities has also taken place, but

predictive capability is lower

UR

Unlike the yield, z =|is sensitive to fine details of pulse shape

Z =|can also very asymmetric, and more measurements are
needed

A z =|is also affected by hot electrons, which are likely not modeled
or proxied correctly
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The assumption of experimental repeatability can be
estimated from the ion temperature asymmetry metric, and is
shown to be a small effect UR
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A 4.is inferred from the width of
the neutron spectrum o
A The spectrum is broadened by
the thermal and bulk velocities
of the reactants along the
detector line-of-sight
A Random target offset or beam
mispointing/energy imbalances
can lead to low mode 20
perturbations o
A These low modes drive bulk
flows in the neutron producing
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Generating New Designs

Laser power \
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The models strongly support decreasing the pulse length
with respect to the implosion time (=| I 1 ) and reducing

laser power after shock breakout to improve performance
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Decreasing the drop in Long pulses typical of low-»
power increases £ € ° designs have small <4 -

We need to shorten the relative pulse length and increase power dip
and implosion velocity to increase yield. We also need to increase
the relative pulse length while controlling the adiabat to increase z =|8

IFAR: in-flight aspect ratio




Design changes from shots 80802 to 90288 incorporate
the model s6 guidelines on effec:
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New pulse shapes are being designed
to enhance performance on future shots
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Understanding Performance
Degradation Mechanisms on OMEGA
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The yields of the best-performing implosions appear
to be degraded by at least 2 with respect to 1-D
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IHHNS the yield expected from a sphere of plasma with burn
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The yield prediction formula can be re-written as a series of

degradation factors
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Scaling in excess of
hydrodynamic scaling

A Beam geometry
mode
A CBET

High modes
A Surface Roughness
A Laser Imprint

Low Modes
A Laser

mispointing
s arget offset Helium-3
Buildup




Systematic experiments specifically identify
the effect of each degradation mechanism;
Imprint is studied by varying SSD

Varying SSD shows minimal effect for the best-performing implosion.
Yield and z =|do not degrade until SSD is <50%

SSD: smoothing by spectral dispersion MRS: magnetic recoil spectrometer




