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Directed Energy Devices

ANovel technology to use high energy
| asers and high powe
to produce military utility o« US.AR FoRce

AAdvantages
A Fast engagement
A Deep magazine
A Potentially norethal and covert

AChallenging to integrafie both
technical, legal, and cultural issues to
deployment
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High Power Electromagnetic‘Sources

AThe fields of vacuum

electronics and directed energy

technology have exhibited
tremendous progress since
World War |l

AThere has be-bke
progress poweirequency
sqguared product

AP (power density) has doubled
every 26 months since 1930

AMerger of plasma, accelerator,
radar, and nuclear physics
communities
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Progression of power density for major device types (MWI[GHz)?
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HPM i High Power Microwaves

AAMi crowaved is a technical term
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Parallel Particle-in-Cell to the
Recscc. kimlaé

« HPM and vacuum electronics has “‘Bumpy” Magne
demonstrated Pf? (energy density) doubling
every 26 month since 1930

-~ MW-GW, ~30-40% efficient, 0.1-1 us

« 3D, high-fidelity, parallel modeling of high
energy density fields and particles in complex
geometry with some surface effects

« Regularly reach the limit of air breakdown
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Magnetron Physics((Crossed-ield Device)
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So what isithecchallenge?

A Device is complicated electromagnetically v\
A Mode competition [ S
A . SIY  2RHR &f thawavedequatid4rd

couples modes together and changes the
GK20¢ GdzoS Y2RS LI 00SNY
dynamically
A Mode, frequency, and output power all
depend critically on level of RF power and /
Ay Lldzii OdzNNBy s @2fdF 383 ST I
AntennaRods / / Antesina Red
A DC, RF, and space charge fields are all of
equal magnitude

What canwecdorto: shorien/the designcycele”
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Long cavity angle

Automated TestCase [7

ARescale a rising sun magnetron from A% \ / /
2GHz to 4GHz and maximize output Y X
power for the new design subject to the \§\\ Ké//
constraint that the device operates in a ) ?\N g o
particular mode (efficiency and | ///A X
extraction arguments) and starts quickly //é/ //T\\ "
AScaling laws exist for the electromagnetic it ‘
piece and then can-go Hull Cutoff and \)

BunemanrHartreefor plasma physics pieca

A Use Dakota and do an Optlmlzathn StUd Control parameters Constraints Objectives
. ; ) Cathode radius Hull voltage Operation frequency
A Fitness function 70% operating frequency al Anoderadius Buneman-Harree  Start-up time
. rt cavity radius voltage
30% StaI’-UJ p tl me Loig ({:;avity radius Ratiogof cavities

Cathode-anode radii
voltage
Appliged magnetic field

Qn uent Simula.tion grid

ciences, Lic resolution




Automated TestCase

ARescale a rising sun magnetron

from 2GHz to 4GHz ande™aximize Wrong mode, even though

output power for the ign right frequency
subject to the cos the
device operat ar S
mode (ef traction |
arguns arts quickly

' ' e f .

A-Use Daketa-and-do-an-optimization ’

study |
AHow to best use investment in ML gt ras e v s
to help? .
gcolgnfggsegz Dakota used Method of Feasible Directions
b



Work: Flow

@ Sandia National Laboratories Optin:lizalion
framework

¥ DAKOTA

Explore and predict with confidence.

Manual analysis of the
optimization results

Wakefields generated by the propagation of
= “an slectron beam in a TESLA cavity

onfluent
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How do we getithehhuman out, ofithenloop?
DNN Image Classifier

fTrain - 30%

/[- 5 Spokes Formed \

%R

=,
[5 Spokes Not Formed

/ Test — 60% ‘("‘H)\ ~q
O - »

O ﬁ PARAMETERS FOR THE MULTILAYER PERCEPTION NN IMPLEMENTATION
. j/ WITH SCIKIT-LEARN

e
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Parameter Value
Number of hidden layers 5-50
Number of neurons in each layer 20-100
Solver Ibfgs
Activation function tanh, relu
L2 penalty le-4
Onﬂuent Maximum number of iterations 150
C1€NCcEesS o LLC Optimization tolerance le-4




Detalls

AWe choose image classification as that seemed the source of how humans
Intervened in the design process

AiNumberso (time history, field |levels)
directly, but what an image means typically takes the humanveust

AUsed supervised learning
A Generated 10,000 images from 1000 simulations based on previous parameter range:
A Labeled them (took about 3 hours)
Almages reduced to vectors

A Pixels (0,1) based on the presence of a PIC macroparticle (no density or weighting
Information)1 just capturing spatial relationship. This is set by the resolutions

A Trained via AWS
A 30% training data, 10% tuning hyper parameters, 60% test

A 91% effective at identifying 5spoke pi mode (20 hidden layers, 25 neutrons per
g layer, classification threshold of 0.5)
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Revised Work Flow
o

S— framework
DAKOTA ..
Solution of the nonlinear optimization
el Choe it : problem
\! Si m Manual analysis of the ML based tool for automatic
optimization results analysis of the optimization results

f?‘ = Rakefields generated by the propagation of
< ' - “anglectron beam in a TESLA cavity

<
simulation results

[ Fastana]ysisofa_llthe]

3
Automatic identification of the pri
device operation mode

h
[Automatic 1dentification of the temporal]

Repeat these procedures while
intuitively searching through the
set of simulated data

slability of the operalion mode

h
Identification of the multiple suitable
solutions (if present)
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4GHz Design

AUsed image classifier in conjunction with optimization
AWeighted start up time 30% and operating frequency 70% via Dakota
ARequired Pi mode (§pokes) This was a constraint

, Initial state of the optimization/ML problem: | i Result of the optimization/ML study:
g‘:’u":,"‘:: . * starting magnetron geometry: / // Operation | *  modified magnetron geometry
o > RCathode= 1.0e-2 i sy | Sageny | » RCathode= 0.46e-2
 2GHz > RAnode=2.242e-2 £ / b o T AGHz > RAnode=1.1e-2
X N N\ / ort Cavity
» RLongCavity=10.0e-2 S By \‘\‘\' / / 5 ' o » RLongCavify = 5.0e-2
» RShortCavity= 6.0e-2 NI A j » RShortCavity = 3.0e-2
5 spokes \\j" g v g oo} +  5spokes
2. operation frequency of 2 [GHz] = | o Li Lot | *  operation frequency of ~4 [GHz]
* DC voltage=26.0e3[V] N, * DCvoltage=12.5e3[V]

-— ———

e ks

iy .5 S T 7T 2 - N 7T
Time [sec] (x10°-6)

Time [sec] (x10"-39)

2.5 500ns
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Note difference in time scale




